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We develop a mathematical framework for higher order physical theories, in which

the dynamics of physical systems can be acted upon by higher-order physical pro-

cesses called supermaps. We start by defining the notion of Super-Monoidal Category

a constraint imposed on the notion of a V-Monoidal Category, whose morphisms repre-

sents supermaps acting on a base category of physical processes. We proceed to define

the notion of a theory which permits the static manipulations of all of its dynamic

processes, showing that when equipped with a particular well motivated isomorphism

they in fact co-incide with closed monoidal categories. We then use the framework to

present a theorem on the inevitability of closed monoidal structure for theories which

contain infinite towers of super-physical theories, each layer being a theory of manipu-

lations of the processes within the layer beneath it. Super-Monoidal Categories, being

an axiomatisation of the basic features of theories of supermaps provide a broad frame-

work for the study of novel causal structures in quantum theory, and, more broadly,

provide a paradigm of physical theory where static and dynamical features are treated

in a unified way.
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1 Introduction

Traditionally, physical theories have been concerned with the laws governing the evolution of cer-

tain physical systems, such as particles or fields. In the ontology of a theory, the physical systems

are regarded as fundamental objects, while their evolution is regarded as a tool for predicting

elations among objects in different regions of space and time. Over the past decade, a series of

works in quantum information theory started exploring the idea that processes themselves could be

regarded as objects, which can be acted upon by a kind of higher order physical transformations,

known as quantum supermaps [1–7]. Quantum supermaps have found a wide range of applications

to quantum information and computation [8–23], and to the study of new types of causal struc-

tures arising in quantum mechanics [3, 24–26]. In addition, higher order transformations provide

a broad framework for general physical theories with dynamical causal structure, and, eventually,

are expected contribute to the formulation of a complete theory of quantum gravity, as originally

suggested by Hardy [27]. Complementary to this research direction is the development of pro-

gramming languages which permit higher order types whilst retaining compatibility with quantum

theory (by forbidding cloning [28], the signature of the cartesian monoidal structure underlying

the standard lambda calculus), such as linear or quantum lambda calculi [29–34].

A compositional foundation for the study of physical theories, including quantum and clas-

sical theory, is provided by the process theory framework [35]. The framework is built on the

notion of symmetric monoidal category, which captures the basic structures required in a broad
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class of physical theories. Such structures include a notion of system, a notion of processes be-

tween systems, and, crucially, a notion of the sequential and parallel composition of processes,

diagrammatically represented as

A

f

B

C

g

D

A

f

B

g

C

(1)

The tensor unit I represents the trivial system, and, for every object A, the processes of type I → A

are viewed as states of system A. The process theoretic treatment has contributed new insights

and intuitions to quantum foundations and the general structure of physical theories [36–53]. In

addition to the above formal circuit based representation for quantum processes, supermaps are

often informally represented by boxes with open holes, into which processes may be inserted:

S f∼=S(f) (2)

In a recent work [54], a process theoretic framework for supermaps was developed for the pur-

pose of providing a categorical language for causal structures. In this framework, causal structures

are represented by the objects of a ∗-autonomous category of higher order processes Caus(C) built

on from a “pre-causal” category C. This construction revealed deep relations between ∗-autonomy

and the structure of higher order transformations in quantum theory, in particular producing a

convenient type system for reasoning about causal structures. Building on this work, there is a

sense that the notion of a raw-material pre-causal (and so compact closed) category will be too

restrictive a requirement in the study of infinite dimensional systems such as those encountered

in quantum field theory, and ultimately quantum theories of gravity. Furthermore the authors

anticipate that it would be fruitful to pin down the notion of a higher order theory as a mathemat-

ical structure in its own right, independently of the study of causality, and independently of the

notion of a raw material category from which a theory might be constructed. Such a framework

would potentially contribute to the initiation of a new research direction, the study of the effect

of imposing physical principles onto abstract higher order theories.

The first contribution of this paper is to provide a categorical notion for super-physics, via the

definition of a Super-Monoidal Category, the world in which we claim such a higher order theory

must live. The objects in a Super-Monoidal Category correspond to types of physical processes,

and the morphisms represent the possible supermaps transforming processes into processes. The

key principle of a Super-Monoidal theory, is that its should be possible to implement the external

structural features of a standard symmetric monoidal category (process theory), concretely the

sequential and parallel composition structure which might occur in a standard theory of physics,

become manipulations that may be implemented by higher order transformations of those pro-

cesses. In short a super-monoidal theory is one in which black box processes of an underlying
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theory may be plugged together by higher order transformations, either in sequence or in parallel.

f g

f g
f

g

sequential parrallel

(3)

The second contribution of this paper is a categorical phrasing of the notion of a completely

parallel theory, a cp-Super Monoidal r-Category : One in which every super-map may be applied

to part of any bipartite process.

S f (4)

After laying the ground work we note that the notion of a theory of supermaps may be iterated,

to provide a formalisation of the notion of a theory of super-super maps and so on.

S

H

(5)

We then consider theories which are conveniently infinitely iterated as a consequence of being

internal or self-contained, precisely those theories with the property that they are their own

theory of higher order transformations. We observe that this leads to precisely a characterisation

of closed monoidal categories. The characterisation is entirely operationally motivated by two key

principles which ensure a physical theory be “complete”, meaning that

• The theory permits the manipulation of all higher order transformations

• There is an equivalence between having access to a generic system type A and the higher

order type [I, A] associated to states on A - the processes from the monoidal unit I to type

A.

We call such categories Linked Super-Monoidal r-Categories and prove that they are exactly closed

symmetric monoidal categories.

Theorem 1. A category C is a Linked Super-Monoidal r-Category if and only if it is a closed
symmetric monoidal category.

We finish by relaxing the above approach to deriving closed monoidal structure for higher order

theories, considering the notion of a tower of theories-each a theory of supermaps for the theory
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bellow it. We provide a suitable notion of a tower of Super-Monoidal Categories, with the higher

levels of the hierarchy representing physical transformations on the lower levels. Operationally,

one can associate higher levels to more powerful agents, who have the ability to manipulate more

and more complex physical objects. The notion of a Merger of such a hierarchy is introduced

as a candidate for the notion of a theory in which the inhabitants are all-powerful, with the

capability to manipulate objects of any level in a hierarchy of super-theories. For this definition,

we formally require that a hierarchy of Super-Monoidal Categories be embedded into a single

symmetric monoidal category, and that the different levels of the hierarchy are linked so that it is

possible to transition between the layers of the hierarchy, formally this linking is modelled by the

existence of an isomorphism A ' [I, A] between each system type A and the higher order type

[I, A] representing the space of states on (elements of) A. We use the above structure to propose

a fundamental object of study in higher order physics,

Definition 1. A Merger for a coherent sequence of Super-Monoidal categories C(i) is a 2-Cone
(Fi : Ci −→ C) over the diagram

. . . Ci−1 Ci Ci+1 . . .
Ri

i−1(−) Ri+1
i

(−)

in ffSymCat: the 2-Category of Symmetric monoidal categories, symmetric monoidal functors,
and symmetric monoidal natural transformations, such that

• The canonical functor
∐
i Fi :

∐
i Ci → C from the co-product

∐
i Ci in Cat is essentially

surjective

The final technical contribution of this manuscript is to demonstrate that every such higher

order theory possesses a simple, convenient, and familiar categorical property, that of being closed.

Theorem 2. The apex C of any Merger of infinite order is a Closed Symmetric Monoidal Category.

C1 C2

η

η

C3

η

η

Merger - The Arena for Higher Order Physics

A Closed Symmetric Monoidal Category

With Isomorphism A ∼= I ⇒ A

Coherent Sequence of Super-Monoidal Categories

This theorem derives the notion of closed-ness without reference to any physical feature of a theory

except the condition that it be an infinite tower of higher order physical theories. Closed monoidal

structure is the key notion for linear lambda calculi [55,56] and so our main theorem entails that

every complete higher order theory of physics over a base physical theory C1 will permit a notion

of C1-Lambda Calculus, in turn this connection along with the results of [54] may aid the cross
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pollination of results between the development of quantum lambda calculi [29–32] and the study

of causal structure and higher order physics from the perspective of GPTs [57] and CPTs [58].

The connections between new [59] and old [60] categorical structures uncovered result in a

convenient end product for the study of higher order physics, a closed monoidal category. A

conceptual takeaway from these results is that the possibility for agents to plug processes together

in sequence and in parallel, along with a linking between lower and higher order levels of a theory,

are sufficient to operationally justify the convenient mathematical structure of the possibility

to curry any process. Just as with the notion of a compact closed category, this categorical

notion can easily be exported to the process theoretic framework for physics, now with strong

motivation to do so. With a sound framework in place, the imposition of physical principles on

top of higher order structure, the development higher order extensions of infinite dimensional

quantum, field-theoretic, and post-quantum process theories [61–67], the characterisation of the

notion of higher order measurement [38, 68], the exploration of the consequences for higher order

resource theories [69, 70], the relation to open diagrams in terms of the co-end calculus [71, 72],

the intersection with probabilistic [58], inferential theories [73], and the extension to operational

theories with time symmetry [74, 75] present a non-exhaustive list of research avenues that could

in principle stem from this framework.

2 Notation and basic definitions

Here we flag a few standard categorical notions that will be often used in our framework. The

formal definition of each structure in italics is provided in the appendix for reference. We will

use the abbreviation SMC for symmetric monoidal category, the definition of which may be found

in [60], and we will often represent morphisms with string diagrams [76]. A morphism f : A→ B

is represented by a box with input wire A and outut wire B. The ⊗ composition f ⊗ g is written

by placing f next to g.

A

f

B

C

g

D

A

f

B

g

C

(6)

The unit I is not written, interpreted as representing only empty space. Similarly associativity

of sequential composition and associativity of parallel composition up to natural isomorphism are

absorbed into the graphical language, neither being explicitly written. The categorical notion of

one monoidal category living inside another is that of a monoidal functor. In general, there may

be more than one way of representing a monoidal category C inside another monoidal category

D. The notion of equivalence between two representations is that of a monoidal natural isomor-

phism. A key notion for the description of supermaps will be that of an enriched category [77],

which in essence is the lifting of the notion of category so that the composition of processes is

itself a morphism in a category generalising the notion of a composition function between sets of

morphisms. A key notion for the description of a complete higher order physical theory will be

that of a closed symmetric monoidal category (closed SMC) [55]: the structure which captures the

notion of currying with respect to the monoidal product ⊗ of an SMC.
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3 Higher Order Physical Theories: Super Monoidal r-Categories

The first contribution of this paper is to provide a categorical framework for supermaps. In this

section we provide the mathematical definitions, after presenting their basic operational motiva-

tion.

3.1 The Most Basic Manipulations of Processes

A physical theory of supermaps is a second-order theory, built on top of a first-order physical

theory. The states in the second-order theory are identified with processes in the underlying

first-order theory, as in the following illustration:

f

Physics Super-Physics

f (7)

With the objects to be manipulated in place, the second question is that of the most fundamental

super-maps, manipulations of processes that should exist in any higher order theory. It should at

the very least be possible to plug those processes together in sequence, wiring the output of one

into the input of the other.

Super-Physics

fg fg

= (8)

It should furthermore be possible to combine any two processes by simply placing them next to

each-other.

⊗

Super-Physics

fg

=

f

g

(9)

Formally, this means that a theory of super-maps should be at the very least an extension of the

notion of enrichment [78] to include a parallel composition morphism.

3.1.1 The Categorical Language of Basic Manipulations

We first present the data of a V-Symmetric Monoidal Category C in a non-standard way, with the

aim of making explicit how the categorical notion genuinely models the desired physical scenario.

After-which we then rephrase the notion in terms more familiar to standard enriched category

theory.

Definition 2. A V-Symmetric Monoidal r-Category C is a symmetric monoidal category (V, •,⊗V)
and a symmetric monoidal category (C, ◦,⊗C) such that for every pair of objects A,B of C there
exists an object [A,B] of V satisfying homC(A,B) = V(I, [A,B]) and such that there exist families
of morphisms (indexed by the objects of C)

• © : [A,B]⊗ [B,C]→ [A,C] and
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• � : [A,A′]⊗ [B,B′]→ [A⊗B,A′ ⊗B′]

which along with the embedding of the canonical morphisms of C:

• E(iA) : IV → [A,A]

• E(λA) : IV → [I ⊗A,A]

• E(ρA) : IV → [A⊗ I, A]

• E(αABC) : IV → [(A⊗B)⊗ C,A⊗ (B ⊗ C))]

• E(βAB) : IV → [A⊗B,B ⊗A]

Satisfy the following conditions.

⊗

⊗

= ⊗

⊗

◦

E(α)

◦

◦
=

◦

◦
,

E(i)

◦ =

⊗ ⊗

◦

◦ ◦

⊗

=

, =
⊗

E(iI)

◦

ρ̂B

Sequential Composition

Bifunctor

◦

E(α)
Naturality

◦

E(ρA)

Braid

, =
⊗

E(iI)

◦

E(λB)

◦

E(λA)

,

E(f)E(g)

⊗ =

E(g ⊗ f)

⊗

◦

E(βAB)

⊗ =

,

E(f)E(g)

◦ =

E(f ◦ g)

(10)

The structural morphisms of a V-Symmetric Monoidal Category C represent the basic ma-

nipulations that should be performable in a higher order theory, sequential composition, parallel

composition, and the re-ordering of wires, alongside the existence of additional coherence mor-

phisms λ, ρ, α which represent nothing other than the book-keeping of empty space. The standard

definition of a V-Symmetric Monoidal Category is the following

Definition 3. A V-Symmetric Monoidal Category C is a V-Enriched Category C equipped with a
V-Functor � : C ⊗ C → C an object I and a family of V-natural isomorphisms

• α : (A�B)� C)→ (A� (B � C))

• λ : I �A→ A

• ρ : A� I → A

• B : A�B → B �A

The underlying category will be notated by C0. The explicit definition of a V-Symmetric

Monoidal r-Category C can be packaged in standard category theoretic parlance in the following

way.
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Lemma 1. The data required to define either of:

• A V-Symmetric Monoidal r-Category P

• A V-Symmetric Monoidal Category C and a symmetric monoidal category P equipped with
a strict full faithful monoidal and injective and surjective on objects functor r : P −→ C0

are equivalent.

The proof of the above is trivial, and puts onto a formal setting the sense in which a V-

Symmetric Monoidal r-Category C is simply a standard monoidally enriched category equipped

with a re-labelling. It will serve us well during our analyses to think in terms of the more compact

notion a V-Symmetric Monoidal r-Category C, ignoring any intermediate notion of a standard

monoidally enriched category.

3.1.2 Basic Properties of Any V-Symmetric Monoidal Categories

For any V-Symmetric Monoidal Category C the assignment [−,−] extends to a hom functor [−,−] :
Cop × C → V defined by

:=[f, g]
E(f)

◦

◦

E(g)

(11)

The existence of the parallel composition morphism entails that the induced functor [I,−] be a

braided monoidal functor

Theorem 3. The data ([I,−], φ, E(iI)) with the natural transformation φ : [I,−] ⊗ [I,−] −→
[I,−⊗−] given by

[λ,A⊗B]

:=
⊗

φ

[I,A]
[I, A]

[I,B]

[I, A⊗B]

[I,B]

[I, A⊗B]

=
⊗

[I, A] [I,B]

[I, A⊗B]

E(λ)

◦

(12)

defines a braided lax monoidal functor

[I,−] : C → V

Proof. A standard result of enriched category theory, given in the appendix for completeness.

Physically, the natural transformation φ is interpreted as a process that takes two states

and interprets them as a bipartite state, morally its meaning is identical to that of the parallel

composition process ⊗. A key conceptual and technically critical feature of V-Symmetric Monoidal

Categories is the existence of a higher order process representing partial use of a lower order process

(the usage of one of its inputs).

Lemma 2. For any V Symmetric Monoidal r-category C there exists an operation ∆, named
partial insertion, which satisfies the following condition:

σ

∆

σ

φ
=

[I,X] [I, Y ] [X ⊗ Y,Z] [I,X] [I, Y ] [X ⊗ Y,Z]

(13)
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Proof. Given in the Appendix

The existence of a partial insertion is a pre-cursor to the notion of currying in a closed monoidal

category. An agent in the super-theory can take any bipartite process, and use only one of its

inputs, leaving the rest available for use at a later date.

Finally, for any supermap, there exists a usage transformation, which takes the output process

of a supermap and applies it to the specified input state space.

Theorem 4. There exists a natural transformation defined by

Vop × C SetθAB

V([I,A]⊗−,[I,B])

V(−,[A,B])

: θAB(S) = ◦

S

[I, A]

[I,B]

Termed the usage transformation.

Proof. Immediate by associativity of ©.

The usage transformations can furthermore be viewed as the components of a [Vop,Set]-
Functor

θ : V(−, [A,B]) −→ V([I, A]⊗−, [I,B])

Indeed each component θAB is a natural transformation, a morphism in the functor category,

the functor category can be viewed as monoidal with respect to the day tensor product, and

with respect to this tensor product the above hom object assignments can be assigned famillies

of composition morphisms by (?), and the morphisms θAB can be shown to obey the standard

enriched functor conditions with respect to those families.

3.2 Well-Behavior of Manipulations: Super-Monoidal Categories

On top of a V-Symmetric Monoidal r-Category C, there are additional conditions that should be

expected of a theory of higher order processes V on the processes of a theory C.

• Since the interpretation of a higher order process S : X → [A,B] is that it produces a

process f : A → B of the lower order theory, two higher order processes S, T : X → [A,B]
should only be distinguishable if they are distinguishable when their outputs are applied

to the space of states on A. Stated formally For all I, A,B the composition process ©IAB

ought to satisfy

◦

S

6=S T =⇒ 6=
◦

T

[A,B] [A,B]

[I, A][I, A]

[I,B] [I,B]

(14)

Categorically this condition is precisely the requirement that the natural transformation

θ be a monomorphism in the functor category Cat(Vop ⊗ C,Set), since the domain of

all functors in Cat(Vop ⊗ C,Set) is Set the monomorphisms between them are simply
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the natural transformations for which each component is a monomorphism (injection) in

Set. This has the additional consequence of entailing that the functor [I,−] be faithful.

Furthermore when θ is viewed as a [Vop,Set]-Functor the condition that each component

θAB be a monomorphism is equivalent to the requirement that θ be full and faithul as an

enriched functor.

• One should expect that all correlated states on the joint system A⊗B in a standard physical

theory should also exist as correlations on the joint space [I, A]⊗ [I,B] of states on A and

states on B. In other words one should expect a natural isomorphism [I, A] ⊗ [I,B] ∼=
[I, A⊗B]. Categorically this is the requirement of strength for the monoidal functor [I,−].
A note worth making is that for non-cartesian monoidal physical theories, this immediately

forbids any higher order theory V over C from being cartesian monoidal. In particular the

trivial Set-Symmetric Monoidal r-Category C can only be a sensible higher order theory

when C is cartesian I.E it has no non-trivial joint states.

• The allowed processes from the states [I, A] of A to the states [I,B] of B should simply be

the allowed processes from A to B, this is the requirement that the monoidal functor [I,−]
be full.

Definition 4 (A Primitive Theory of Supermaps). A V-Super-Monoidal r-Category C is a
V-Symmetric Monoidal category C such that

• The usage transformation θ : V(−, [A,−]) =⇒ V([I, A]⊗−, [I,−]) is a monomorphism in
the functor category Cat(Vop ⊗ C,Set).

• The faithul monoidal functor [I,−] is full and strong.

Example 1 (Quantum Supermaps - Low Order Types in Higher Order Causal Categories). In any
Higher Order Causal Category Caus[C], the first order types (A, {d}) represent the sub-category
Caus1[C] causal processes, in the case of quantum theory they represent CPTP maps. One can then
construct a Caus[C] Super-Monoidal r-Category Caus1[C] using the fact that Caus[C] is closed
monoidal to make the assignment E(f) = f̂ where f̂ is the adjunct to f . Similarly sequential and
parallel composition morphisms can be constructed in the usual way under adjunction to circuits
of evaluation morphisms. All coherence conditions follow from coherence conditions with respect
to the closed monoidal structure of Caus[C] along with the universal property of evaluations.

Given two theories of super-physics, that is, a V1-Super-Monoidal r-Category C1 and a V2-

Super-Monoidal r-Category C2 a notion of homomorphism between the two can be defined, a

functor from C1 to C2 a functor from V1 to V2 which preserves the manipulation structure:

Definition 5. A super monoidal r-functor F between a V1-Super Monoidal r-Category C1 and a
V2-Super Monoidal r-Category C2 is

• A monoidal functor (FC ,mC , vC) : C1 −→ C2

• A monoidal functor (FV ,mV , vV ) : V1 −→ V2

• For each A,B ∈ C a morphism FAB : FV ([A,B]1)→ [FC(A),FC(B)]2

11



such that FAB satisfies

◦
=

◦
FBCFAB

FAC

E1(f)

FAB

E2(FC(f))

= ,
◦

⊗

=

⊗

FBB′FAA′

FA⊗B,A′⊗B′

,FV
FV

FV
E(mC)E(mC)

Vv

φv φv

(15)

A V-super monoidal r-functor F is furthermore termed strong if FC and FV are strong, and
termed full and faithul if FC , FV are full and faithul and every FAB is an isomorphism.

The definition of a super-monoidal functor is analogous to the notion of a V-Monoidal functor

[59] up to the accounting for the additional structure of the underlying category C and including

the possibility that the category V also be subject to change. Super monoidal r-functors do

indeed define a notion of morphism between super monoidal r-categories, they permit a notion of

composition and so form a category.

Theorem 5. Super Monoidal r-Categories and the Super Monoidal r-Functors between them define
a category SupMonrCat.

Proof. The composition F ◦ G of a super monoidal r-functor F and a super monoidal r-functor G
is given by

• (F ◦ G)C := FC ◦ GC

• (F ◦ G)V := FV ◦ GV

• (F ◦ G)AB := FGC(A)GC(B) ◦ FV (GAB)

A full proof that this composition is associative and indeed defines a super monoidal r-functor F
is given in the appendix.

As a fruit of providing the notion of functor between higher order theories we get for free the

categorical invariant notion of a sub-theory as a faithful version of such a functor.

Example 2. The theory of non-signalling LOCCP supermaps is a higher order sub-theory of the
theory of quantum supermaps in the sense that it embeds into the V Super Monoidal r-Category C of
quantum supermaps via a faithful super monoidal r-functor F : (VLOCC, CLOCC) −→ (V, C) given
on objects by FC(X) := EC(X) on morphisms by FC(f) = f similarly for FV . The components
FA,B are all identities.

4 Complete Parallelism in Higher Order Theories: cp-Super Monoidal
r-Categories

Having addressed the treatment of processes as independent objects that may be arranged and

plugged together we propose a model for the final notion of a theory of supermaps, the condition
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that any supermap, when applied to part of any bipartite process, may return a new bipartite

process.

m
S

(16)

To include a model of this feature we require that there be a second notion of parallel compo-

sition � which treats processes as already glued together. We ask for a (natural) isomorphism of

the form

[A,A′]� [B,B′] ∼= [A⊗B,A′ ⊗B′]

so that � represents all bipartite channels as opposed to the independently manipulable ones.

[A,A′]� [B,B′]

∼= {m : (A⊗B)→ (A′ ⊗B′)} (17)

We also ask that there should be a relationship between the two tensor products, a sense in which

for any pair of supermaps S : [A,A′]→ [B,B′] and T : [C,C ′]→ [D,D′] the two tensor products

S ⊗ T and S � T should be the same. Extended more generally to all objects, we expect to have

some embedding LXY : X ⊗ Y → X � Y of the space X ⊗ Y which treats X and Y as more

freely manipulable, and the system X � Y which more glues the systems X and Y together. This

embedding should witness the similarity between S ⊗ T and S � T .

LXY

S T

=
LXY

S � T

⊗
⊗

(18)

This embedding notion is captured by a lax monoidal functor L : (V,�, I)→ (V,⊗, I), where the

lax-ness captures the notion that X ⊗ Y lives inside of X � Y . We call super-monoidal categories

which support this second notion of parallel composition as completely-parallel. The term is

specifically chosen to have its initials “cp” co-inside with the usual term given to the notion of

complete parallelism in quantum information theory, the notion of “complete positivity”.

Definition 6 (V cp-Super Monoidal Category C). A V cp-Super Monoidal Category C is a
(V,⊗V,, I) Super Monoidal Category (C,⊗C , IC) equipped with

• An additional monoidal structure (V,�V , I)

• A natural isomorphism β : [A⊗C B,A′ ⊗C B′] ∼= [A,A′]�V [B,B′]

• A lax monoidal functor L : (V,�V , I) −→ (V,⊗V , I)

such that the following coherence conditions are satisfied:

[A,A′]⊗ [B,B′] [A⊗B,A′ ⊗B′]

[A,A′]� [B,B′]

L[A,A′][B,B′]

⊗ABA′B′

βABA′B′

13



We will continue to use the string diagrammatic calculus for symmetric monoidal categories to

absorb the manipulable ⊗ monoidal product, relegating terms involving � the cp-tensor product

to be expressed symbolically. Given this convention the coherence conditions given above for

complete-parallelism may be expressed diagrammatically:

LXY

=
⊗

βABA′B′

[A,A′][B,B′]

[A,A′][B,B′]

[A,A′]� [B,B′]
[A,A′]� [B,B′]

We now example the morphisms of super-monoidal categories which furthermore preserve cp-

structure.

Definition 7 (Morphism of cp-Super Monoidal Categories). A morphism of cp-Super Monoidal
Categories is a morphism (FC ,FV ,FAB) of super-monoidal categories such that the functor FV

is eqipped to a monoidal functor

F� := (FV , φ�, ε�) : (V,�V , IV ) −→ (V,�V , IV )

and such that the following functors commute

V V ′

V V ′

FH
�

LV LV ′

FH
⊗

and such that the following coherence conditions

F [A,A′]F [B,B′]

[FA,FA′][FB,FB′] F [A,A′][B,B′]

[FAFB,FA′FB′] F [AB,A′B′]

[FAFB,FA′B′] [FAB,FA′B′]

FA,A′�FB,B′ φ�
[A,A′][B,B′]

βFA,FA′,FA′,FB′ FβA,B,A′,B′

i�φ⊗
A′,B′

FAB,A′B′

φ⊗
A,B

�i

are satisfied: for which all tensor products such as A�VB and A⊗CB along with object subscripts
have been suppressed whenever the interpretation is clear.

Theorem 6 (Category of Completely Parallel Theories). The cp-super monoidal categories and
the morphisms between them define a category

Proof. Given in the Appendix

Example 3 (1st Order Types in Higher Order Causal Categories). Taking D to be some pre-
causal category, then the categories Caus[D] and Caus1[D] define a Caus[D] cp-Super Monoidal
Category Caus1[D]. For every A,A′, B,B′ in Caus1[D] then taking the � of Caus[D] to be the
tensor product the morphism

κAA′BB′ : [A,A′]�V [B,B′] ∼= [A⊗C B,A′ ⊗C B′]

14



is given by the following sequence of natural isomorphisms noted in [54].

[A,A′]�V [B,B′] (19)
∼=[A, I]�A′ � [B, I]�B′ (20)
∼=[A, I]� [B, I]�A′ �B′ (21)
∼=[[[A, I]� [B, I], I], A′ �B′] (22)
∼=[A⊗B,A⊗B] (23)

Crucially as the above is a sequence of natural isomorphisms, their composition κ is natural in all
four components, this is furthermore easily witnessed by the fact that in the underlying category D
κ is in fact the identity morphism. In Caus[D] one can show that the identity of the underlying
category D is a morphism

id : X ⊗ Y → X � Y

and so can be immediately checked to satisfy all of the required coherence conditions for a lax
monoidal functor, along with the coherence required with κ and the parallel composition process
⊗.

5 Unification of Lower and Higher Order Physics: Linked Super
Monoidal r-Categories

In this section we demonstrate that CSMC’s can be fully characterised as a simple sub-class of

theories of super-maps. Every Closed SMC is equivalent to a V-Super Monoidal Category C
satisfying two basic operational conditions that ought to be satisfied in any unified theory of lower

and higher order physics.

• All processes in the theory C, whether they be higher or lower order, can be manipulated

inside C

• Objects exist only to encode a space of potential states - there should be an identification

between a system A and the higher order system [I, A] representing the states of A.

Conceptually: the first condition models the assumption that it is the same agents that can

perform processes, super-processes, and so on.

Definition 8. A Self-Super-Monoidal Category is a C-Super Monoidal Category C.

The second condition is captured by an additional notion of being linked, the possibility of

moving between lower and higher order, moving between the part of the theory which concerns

processes and the part of the theory which contains the super processes and even higher into

the part of the theory which contains super-super-processes and so on. The notion of a self-

Super-Monoidal category does not guarantee such an interaction between its sub-theories, indeed

it only captures the notion that lower and higher order processes can peacefully co-exist next

to eachother (inside a single symmetric monoidal category). The most basic way to introduce a

linking interaction between lower and higher order processes is to require that access to a resource

of type A in some theory, could just as-well be seen as access to a resource of type [I, A], which

after-all, should represent nothing other than the space of states of type A.
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Definition 9. A Linked Super-Monoidal Category is a Self-Super-Monoidal Category C equipped
with a monoidal natural isomorphism η : I(−) −→ [I,−].

Conveniently it turns out that Linked Super-Monoidal Categories are equivalent to a familiar

and well-studied notion, that of a closed symmetric monoidal category.

Theorem 7 (Characterisation of Closed Monoidal Categories). There exists a closed monoidal
structure on a category C if and only if there exists a linked C Super-Monoidal r-Category C

Proof. We begin by showing that the first statement implies the second. Let C be a complete
Super-Monoidal Category. Then, to each pair A,B ∈ C assign the candidate for evaluation

eval := evalA,B = ◦

η−1

η

(24)

Since every ◦ is completely injective by assumption, so is every eval. Since η : A → [I, A] is a
natural isomorphism for any f ∈ C(A,B) there exists a morphism f̂ such that

eval := f
evalA,B

f̂

= ◦

η−1

η

f̂

=[I, f ]

η−1

η

= (25)

One can apply the isomorphism η to the partial insertion operation to generate a partial insertion
using a lower level type Y as opposed to the higher level type [I, Y ].

:=

η

∆

Y

∆

[X ⊗ Y,Z]

[X,Z]

Y [X ⊗ Y, Z]

(26)

This partial insertion operation can be used to construct the curried version of any process f from
its static version f̂ , since

∆

eval[X,Z]

f̂

=
◦

η−1

η ∆

η f̂

=
◦

η−1

η η

f̂φ
=

◦

η−1

f̂η

= f (27)

It follows that for every process f its curried version exists, that is, the co-universal arrow definition
of a closed symmetric monoidal category is satisfied. All that remains is to show that eval is
an isomorphism, note that since η : (Id, id, id) → ([I,−], φ1, ˆid) is monoidal, it follows that
η = η ◦ idI = ˆid. From this we see that,

evalI,A =
◦

η−1

η

=
◦

η−1

ˆid

= η−1 (28)

and so eval must indeed be an isomorphism.
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Now we demonstrate the converse, namely that a closed SMC such that every eval[I,A] is
an isomorphism is a complete Super-Monoidal Category. Let C be a closedSMC, then there
exist sequential and parallel composition morphisms defined as adjuncts to circuits of evaluation
morphisms. Concretely the definition enforces that there must exist processes ⊗ and ◦ satisfying,

evalA⊗B,A′⊗B′

=
evalA,A′

⊗

evalB,B′

evalA,A′

evalA,A′

evalA,A′

◦
= (29)

which for satisfy the coherence conditions for a SMSC. Finally one has to show that the category
is linked, that is - that there is a monoidal natural isomorphism A ∼= [I, A] for the induced functor
[I,−], indeed up to unitor the inverse η of evalI⇒A, being an isomorphism by assumption, is
such a candidate. evalI⇒A is natural for any closed monoidal category, so η being its inverse is
immediately also natural. Furthermore η is easily checked to be monoidal.

=
η

evalI⇒(A⊗B)

φ

evalI⇒(A⊗B)

η η

= ⊗

eval(I⊗I)⇒(A⊗B)

η η

=

evalI⇒A

η η

evalI⇒B

= (30)

This completes the proof.

It follows that any example of a closed monoidal category, of which there are many in the

literature could so far present a candidate higher-order theory of physics. As such this result

represents a baseline, a bare minimum requirement for a higher order theory, leaving open the

challenge of importing additional physical principles which might distinguish higher order physical

theories from their non-physical closed monoidal cousins just as the category of quantum processes

can in fact be entirely operationally distinguished from all other symmetric monoidal categories

[36]. The most familiar notion of a physical higher order theory in the literature is that of

a theory which is constructed whilst imposing the preservation of some notion of causality, in

which processes are required to either have unit trace, or preserve iterated notions of trace. The

motivating example of such a theory is a higher order causal category [54], for which we present

here a minor generalisation, in which the notion of compactness of a raw-material category C
is relaxed, with the aim of being applicable to standard mathematical formalisation of infinite

dimensional systems for which the bounded linear maps appear as states in the closed monoidal

category of Banach spaces.

Definition 10 (Dual Set). For a set of states c ⊆ C(I,A) of an arbitrary category C the dual set
c∗ is defined by

π ∈ c∗ ⇐⇒ ∀ρ ∈ c π ◦ ρ = 1

Similarly for a set of effects c ∈ C(A, I) the dual set c∗ is defined by

ρ ∈ c∗ ⇐⇒ ∀π ∈ c π ◦ ρ = 1

The notion of dual set is all that is required to construct a closed monoidal category which is

deterministic (the only scalar being 1) from any raw-material closed monoidal category. We will

in general write the evaluation morphism of a closed monoidal category by the symbol e.
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Example 4 (Higher Order Deterministic Categories). For every full and causally pointed subcat-
egory X of a closed monoidal category C there exists a closed monoidal category Det[C] in which
objects are given by pairs (A, c) in which A is an object of C and c is a set of states c ⊆ C(I, A) such
that c∗∗ = c. The morphisms from (A, c) → (A′, c′) are taken to be those morphisms f : A → A′

such that for each ρ ∈ c then f ◦ ρ ∈ c′. This category is symmetric monoidal, with tensor product
given by (A, c)� (A′, c′) := (A⊗A′, (c⊗ c′)∗∗) where

c⊗ c′ := {ρ⊗ ρ′ : ρ ∈ c and ρ′ ∈ c′}

and the tensor product has its action on morphisms inherited from C I.E f � g := f ⊗ g. The
tensor unit is given by (I, {1}). The proof that the above defines a symmetric monoidal category
takes the identical steps to those of [54]. The category Det[C] is furthermore closed monoidal, for
every (A, c), (A′, c′) ∈ Det[C] there exists the object (A⇒ A′, c⇒ c′) where

M

M

e

ρ

∈ c′∈ (c⇒ c′) ⇐⇒ ∀: ρ ∈ c (31)

For every c = c∗∗ and c′ = c′
∗∗ the set c ⇒ c′ indeed satisfies (c ⇒ c′)∗∗ = c ⇒ c′ since first of

all for any set s ⊆ s∗∗ but furthermore for any M ∈ (c ⇒ c′)∗∗ then for every π ∈ (c ⇒ c′)∗ it
follows that π ◦M = 1, in turn this implies that since for every τ ∈ c′∗ and ρ ∈ c then for every
σ ∈ (c⇒ c′)

σ

e

ρ

τ

= 1 (32)

which entails that

e

ρ

τ

∈ (c⇒ c′)∗ (33)

which entails that for every M ∈ (c⇒ c′)∗∗ then

M

e

ρ

τ

= 1 (34)

which entails that

M

e

ρ

∈ c′
∗∗ = c′ (35)

where the last equality follows by closure of c′. The evaluation morphisms of the closed monoidal
structure of C are inherited into a closed monoidal structure for Det[C], firstly the evaluations are
indeed morphisms of the correct type e : (A, c)� (A⇒ A′, c⇒ c′)→ (A′, c′) since for every ρ ∈ c

18



every M ∈ (c⇒ c′) and every τ ∈ c′∗

M

e

ρ

τ

= 1 (36)

which implies that τ ◦ e ∈ (c ⊗ (c ⇒ c′))∗. In turn this implies that for every τ ∈ c′∗ and every
K ∈ (c⊗(c⇒ c′))∗∗ then τ◦e◦K = 1 and so e◦K ∈ c′∗∗ = c′. Finally for every f : (A, c)�(Z, z)→
(A, c′) its currying f̂ : Z → (A ⇒ A′) exists as a morphism f : (Z, z) → (A ⇒ A′, c ⇒ c′) since
for every σ ∈ z and every ρ ∈ c then

f̄

e

ρ

=

M

f̄

ρ M

∈ c′
(37)

which is precisely the condition that f̄ ◦ σ be a member of (c⇒ c′). Uniqueness is inherited from
uniqueness in C. This is sufficient to entail that Det[C] be closed monoidal.

Curiously we note that there is no reason to expect the result of the generalised Caus[C]
construction to be ∗-Autonomous, however the property of ∗-Autonomy is lifted from C to Caus[C]
whenever it is present in C.

Example 5 (Day Convolution). For every V-Enriched Category C the enriched presheaf category
[Cop,V] is a closed monoidal category with respect to the day convolution product ⊗Day. There is
a full faithful strong monoidal functor y : C → [Cop,V] meaning that every physical theory can be
viewed as a full subcategory (in the invariant sense) of a higher order theory. In future work it will
be of interest to compare the kinds of higher order functions that exist within the day convolution of
the category of causal quantum processes and compare them with those which exist in the category
Caus[CPM[fHilb]]. Furthermore this leaves open the question of the kinds of theories which
are in some sense initial or terminal, and the possibility to contribute to the discourse over the
supermaps which should be regarded as “reasonable” by considering those higher order theories
which satisfy some universal properties analogous to those consdiered for standard quantum theory
in [Staton].

The notion of a higher order category which is deterministic but not causal in the usual sense

may be useful for modelling higher order processes in time-symmetric settings [74]. Having pinned

down the higher-order part of higher order physical theories, it will be of interest in future work to

analyse the interaction of closed monoidal structure with other operational notions, in particular

the introduction of convex mixtures and generalised probabilistic structures [58].

6 Towers of Super-Physical Theories

In the remainder of this manuscript we present a no-go theorem, on the kind of theories that

can result from the gluing together of a tower of physical theories, demonstrating that if a theory
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consists of essentially no more than a tower of sufficiently well behaved physical theories and

it is possible within the theory, to move between the layers of the tower then is must be the

case that such a theory is closed monoidal. The formal object of study about which the above

theorem is proven is similar to the notion of a co-limit but the authors suspect it to be more

general. Following the development of the field of higher order physics, after the introduction of

supermaps, it is natural to develop theories in which those supermaps themselves may be subject

to manipulation by even higher order theories. This research direction has culminated in the

construction of complete higher order physical theories for finite dimensional GPTs [7, 79] and

pre-causal categories [54]. We now present the notion of a family of theories over a base theory,

each a theory of supermaps over the theory that precedes it. The base theory represents a given

physical theory, such as quantum or classical probability theory. The second layer represents a

theory of supermaps, the third layer a theory of super-supermaps, an so on, as illustrated in the

following picture

f
◦2 ◦3

C1 C2 C3

E(f) E(◦2)
(38)

The ultimate goal of introducing this construction is for the specification of a complete higher

order theory, into which such a sequence will embed. Mathematically, a hierarchy of higher order

physical processes is represented by an ascending sequence of Super-Monoidal Categories

Definition 11. An ascending sequence of Super-Monoidal r-Categories (C1, C2, . . . , CN ) is a se-
quence of Symmetric Monoidal Categories such that for every i there exists a Ci+1-Super Monoidal
r-Category Ci.

In such a sequence, the category Ci is “encoded” into the higher level Ci+1 by the monoidal

raising functor Ri+1
i (−) := [Ii,−]. It will be convenient to define the following compact notation

for the induced encoding (full faithul braided monoidal functor) from level i to level j > 1.

Rji : Ci −→ Cj Rji := Rjj−1 ◦ R
j−1
i

Theorem 8. Let Ci be an ascending sequence of Super-Monoidal r-Categories then for every j > i

there exists a Cj-Super Monoidal r-Category Ci

Proof. There are in fact at least two natural ways to construct a Ci+2-Super Monoidal r-Category
Ci. Firstly for each A,B ∈ Ci define

[A s B] := Ri+2
i+1([A,B]) ∈ Ci+2 (39)

and define

◦s

=
◦

⊗s =
⊗

,

Ri+2
i+1 Ri+2

i+1

Ei(f)
Es(f)

=
Ri+2
i+1

,

φ φ
E(iI)

the lifting of the composition morphisms of Ci+1. Then the satisfaction of all defining conditions of
a super-monoidal category are given by the lifting of those Conditions by functorality. Secondly,
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for each A,B ∈ Ci define

[A m B] := [Ri+1
i (A),Ri+1

i (B)] ∈ Ci+2 (40)

and define the composition morphisms ©m,
⊗m and the bijection Em by

◦m

= ⊗m =

⊗

[φ−1, φ]

,

Ei+1(Ri+1
i (f))

Em(f) =
◦ ,

The proof that this defines a super-monoidal category is given in the appendix. By iterating
either of the above constructions a Cj-Super Monoidal r-Category Ci may be constructed for any
j > i.

As previously noted, there is a sense in which the agents inhabiting layer Cj are strictly more

powerful than the inhabitants of Ci<j , in the sense that each Ci<j may be embedded into Cj . For

any finite sequence Ci of length n, the final category Cn may be seen as the arena in which agents

my perform manipulations over any category in the preceding sequence. This notion does not

extend so simply to infinite sequences in which there is no member of the sequence that can be

interpreted as the theory which contains all of the others, to cope with this issue, in which one

would like to define a category which contains the infinitely powerful agents that may implement

processes from any member of an infinite sequence we will introduce the notion of a Merger for

a sequence, which will trivialise for all but infinite sequences. Before constructing from such a

hierarchy of super-theories the definition of a Merger, a property of consistency along such a

sequence should be addressed. There exists a family of morphisms

γA,B : [A s B]→ [A m B] (41)

which can be used to construct a super monoidal r-functor.

Theorem 9. Let (C(i)) be an ascending sequence of Super-Monoidal categories such that every
[I,−] is full. Then, for all i, there exists a super-monoidal r-functor

γi : (Ci+2, Ci, Es, [− s −]) −→ (Ci+2, Ci, Em, [− m −]) (42)

defined by the functors γC(−) = ICi
(−) and γV (−) = ICi+2(−) along with the family

γAB ∆:=

E(◦IAB)

(43)

Proof. Given in Appendix.

For the next step in our construction we will require a stronger condition, namely that γ be

an isomorphism, meaning that the above enrichments of Ci are equivalent.

Definition 12. An ascending sequence of nested Super-Monoidal Categories is (Ci)i∈I fully co-
herent if

• for all i ∈ I Ci+1 is a Super-Monoidal category for Ci, and

• for all i ≥ 3 the canonical super monoidal r-functor γi is full and faithful.
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6.1 Theories Consisting of Coherent Towers are Closed Monoidal

The mathematical notions are now in place for the definition of a Merge, consisting in all the data

that should be supplied in the definition of a theory of all-powerful higher order transformations

which act upon lower order objects, higher order objects, and mixes between them. Given a

sequence of higher order theories, the data which will be used to specify a physical theory, all

that remains is the notion of a theory C into which such a sequence C(i) is embedded. Such an

embedding for a generic sequence C(i) is captured categorically by a sequence of full and faithful

functors Fi : C(i) → C. For C to represent a theory which contains C(i) and nothing more a further

condition of essential surjectivity should be imposed on the union (co-product) functor∐
i

Fi : C(i) → C

Finally we impose the condition that there be a way to freely move between layers of the theory.

The most basic notion of a linking between levels is via an isomorphism A ∼= [I, A]. There should

be no practical distinction between having access to A and having access to the space of states

[I, A] on A. Furthermore there ought not be a practical difference between the performing of

f : A → B or instead the conversion of A to [I, A] and the consequent application of [I, f ] (“f”

interpreted as a map which applies f to the states of A to produce states of B). Formally the

equivalence between these actions, when consistent with the monoidal structure, is captured by

the existence of a monoidal natural isomorphism

ηii−1 : Fi−1(−) −→ Fi ◦ Rii−1(−) , (44)

In short, ηii−1 provides a witness for the equivalence between A and [I, A] inside C. For ease of

notation we will denote the inverse (ηii−1)−1 by ηi−1
i when needed. The existence of a natural

isomorphism ηii−1 for each i is can be concisely phrased in the language of 2-Categories, it is

precisely the requirement that C be a 2-Cone in the 2-Category ffSymCat of

• Symmetric monoidal categories

• Full Faithful Strong Monoidal Functors

• Monoidal Natural Transfomations

That is, for a diagram D in ffSymCat given by a coherent sequence of super-monoidal categories,

and the monoidal functorsRi+1
i : Ci −→ Ci+1 between them, a cone over D is an “apex” category C

equipped with a family of functors Fi : Ci → C such that each of the following triangles commutes

up to a monoidal natural isomorphism ηi+1
i .

Ci Ci+1

C

Ri+1
i

Fi

Fi+1

η

The above discussion culminates in the following definition, that of a complete higher order phys-

ical theory - termed a Merger.
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Definition 13. A Merger for a coherent sequence of Super-Monoidal categories C(i) is a 2-Cone
(Fi : Ci −→ C) over the diagram

. . . Ci−1 Ci Ci+1 . . .
Ri

i−1 Ri+1
i

in ffSymCat such that

• The coproduct functor
∐
i Fi is essentially surjective

A Merger is furthermore termed “n-th order” if the sequence has length n.

For any sequence of finite order the notion of a Merger is essentially trivial, given a sequence of

order n one can simply construct a cone of the above type by taking C = Cn and taking Fi := Rni .

To a category-theorist it may seem a little unusual to see the notion of a theory which contains

an infinite sequence of theories as anything other than a co-limit of that sequence. In the definition

of a merger we trade mathematical familiarity for physical intuition, this is with the ultimate goal

of keeping transparent the conceptual assumptions made about higher order theories which will

eventually lead to the derivation of closed monoidal structure for an infinite order higher order

theory. it may in principle be true that mergers are equivalent to co-limits, we leave that question

for future work.

The primary technical contribution of this manuscript is the discovery that the apex of any

∞-Order Merger possesses a simple categorical property, it must be a closed monoidal category.

Theorem 10. The apex C of any Merger of infinite order is a complete super-monoidal category,
in other words C is a CSMC such that every eI⇒A is an isomorphism.

This result is intuitively captured in the following schematic diagram, a complete theory of

higher order physics is one which contains an infinite hierarchy of theories, and in which agents

can move between the layers of the hierarchy.

C1 C2

η

η

C3

η

η

Merger - The Arena for Higher Order Physics

A Closed Symmetric Monoidal Category

With Isomorphism A ∼= I ⇒ A

Coherent Sequence of Super-Monoidal Categories

This simple to state categorical property on the arena in which higher order physics must take

place, provides an easy starting position, from which the consequences of basic physical principles

in higher order physics can be explored. First steps in this direction of research are taken in [80], in

which an interaction between the strength of spatial correlations, determinism, and the possibility

of signalling between parties is observed.

The culmination of the previous two sections, is an operational justification for the treatment

of closed monoidal categories, in particular with the above stated canonical isomorphisms, as a

key structural feature of higher order physics.
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7 Conclusion

Presented in this manuscript is a mathematical framework, based on the notion of a monoidally

enriched category, developed with the aim to capture the notion of a higher order physical theory.

This framework is analogous in attitude to the process theory framework for standard physics

based on the notion of a symmetric monoidal category. The framework accounts separately for

theories with independently manipulable tensor product spaces of processes and theories which

are completely parallel in the sense that the processes of the theory may be applied to part of

any bipartite process. The framework permits easy phrasing of the notion of an iterated or

internal higher order theory of physics, the inevitability of closed monoidal structure for such

higher order theories is illustrated by two results: That Linked higher order theories characterise

closed monoidal categories, and that categories into which infinite towers of higher order theories

are suitably embedded, are always closed monoidal.
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Appendix

A Preliminary Definitions

Definition 14. A lax monoidal functor (F , φ, ν) is a functor F : C → D between categories C and
D, a morphism φA,B : F(A)⊗F(B)→ F(A⊗B) for every pair of objects A,B and a morphism
ν : ID → F(IC), satisfying coherence conditions [60].

The notion of equivalence between two representations is that of a monoidal natural transfor-

mation.

Definition 15. A monoidal natural transformation η between monoidal functors (F , φ, ν) and
(G, ψ, µ), is a natural transformation satisfying coherence conditions [60].

A key notion for the description of supermaps will be that of an enriched category:

Definition 16. An enriched category (O, C) is a collection of objects O and a monoidal category
C such that

• For every pair of objects in O there is an object [A,B] in C
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• For every triple of objects A,B,B in O there is a composition morphism ◦ : [A,B]⊗[B,C]→
[A,C] (with a minor abuse of notation in the use of the symbol ◦)

• For every object A of C there is a unit morphism id : I → [A,A]

• The following conditions hold

◦

◦
=

◦

◦
,

id

◦ =

[A,B] [B,C][C,D][A,B][B,C] [C,D]
[A,B] [A,B]

(45)

Any enriched category defines an ordinary category, in which the morphisms are the states of

the enriched category, and the composition function is induced by the composition morphism.

Definition 17. The underlying category of an enriched category (O, C2) is the category C1 where

• the objects in C1 are Ob(C1) := O

• the hom-sets in C1 are C1(A,B) := C2(I2, [A,B]), where I2 is the tensor unit in C2

• the composition in C1 is given by g ◦ f := ◦(f ⊗ g).

The key notion for the description of a complete higher order physical theory will be that of a

closed SMC:

Definition 18. An SMC C is closed if for every A,B ∈ Ob(C) there exists an object A ⇒ B

and a morphism evalA⇒B : A ⊗ A ⇒ B → B, called the evaluation morphism, such that for all
f : A⊗ C → B there exists a unique f̄ : C → (A⇒ B) such that evalA⇒B ◦ (id⊗ f̄) = f .

B Existence of a Monoidal Functor

We demonstrate that the structure of a V-Symmetric Monoidal r-Category C is sufficient for the

existence of a lax braided monoidal functor [I,−] : C −→ V. Where

:=
◦

E(f)

[I, f ]

Theorem 11. The data ([I,−], φAB , E(iI)) with the family φAB : [I, A] ⊗ [I,B] −→ [I, A ⊗ B]
given by

[λ,A⊗B]

:=
⊗

φ

[I, A]
[I,A]

[I,B]

[I, A⊗B]

[I,B]

[I,A⊗B]

=
⊗

[I, A] [I,B]

[I, A⊗B]

E(λ)

◦

(46)

defines a lax monoidal functor.

Proof. First of all it must be checked that the familly φAB form a natural transformation φ :
[I,−]⊗ [I,−] −→ [I,−⊗−].

φ

[I, g]

=

[I, f ]

⊗

◦

=

◦

◦

E(λ−1)

E(f) E(g)

◦

⊗

=

⊗

◦

E(λ−1)

E(f) E(g)

◦ E(f ⊗ g) =

⊗

◦

E(λ−1)

φ

[I, f ⊗ g]
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The only coherence condition for a braided monoidal functor that does not follow trivially from
the defining conditions of a V-Symmetric Monoidal r-Category C is the coherence condition

([I, A]⊗ [I,B])⊗ [I, C] [I, A]⊗ ([I,B]⊗ [I, C])

[I, A⊗B]⊗ [I, C] [I, A]⊗ [I,B ⊗ C]

[I, (A⊗B)⊗ C] [I, A⊗ (B ⊗ C)]

α

φ⊗i i⊗φ

φ φ

[I,α]

for the natural transformation φ. Indeed this condition follows by the following manipulations.

φ =

φ

◦

E(α)
⊗

⊗

◦

E(α)◦

◦

E(λ−1)

E(λ−1)

= ⊗

◦

⊗

◦

E(α)◦

◦

E(λ−1)

E(λ−1)

E(i)

= ◦

⊗

⊗

◦

E(α)◦

⊗

E(λ−1)

E(λ−1)

E(i)

=

⊗

⊗

◦

E(α)◦

E((λ−1 ⊗ i) ◦ λ−1)

=

⊗

⊗

◦

E(α)

◦E((λ−1 ⊗ i) ◦ λ−1)

=

⊗

◦

E(α)

◦E((λ−1 ⊗ i) ◦ λ−1)

⊗

=
⊗E((i⊗ λ−1) ◦ λ−1)

◦

⊗

=

⊗

E(λ−1)

◦

⊗

◦

E(λ−1)

⊗

E(i)

=

◦

E(λ−1)

◦

⊗

⊗

E(λ−1)

◦

E(i)

= φ

φ

C The Existence of Partial Insertion

Lemma 3. Let C2 be a Super-Monoidal category over C1. Then, there exists an operation ∆,
named partial insertion, which satisfies the following condition:

σ

∆

σ

φ
=

[I,X] [I, Y ] [X ⊗ Y,Z] [I,X] [I, Y ] [X ⊗ Y,Z]

(47)

Proof. There indeed exists a canonical circuit of the correct type.

∆

◦

[I, λ]:=

[I, Y ]
[X ⊗ Y, Z][I, Y ] [X ⊗ Y, Z]

⊗

◦

(48)
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The lemma then follows from a combination of the coherence conditions of a Super-Monoidal
category:

∆

◦

[I, λ]
:=

[I, Y ]

[X ⊗ Y,Z]
[I, Y ] [X ⊗ Y,Z]

⊗

◦

◦

◦

[I, λ]
=

[I, Y ]

[X ⊗ Y,Z]
⊗

◦

◦

◦

[I,X]
[I,X]

[I,X]

[I, λ]=

[I, Y ]
[X ⊗ Y,Z]

⊗

◦

[I,X]

=

[I, Y ]

[X ⊗ Y, Z]
φ

◦

[I,X]

(49)

D The category of Super Monoidal r-Categories

Here we demonstrate that the composition of Super Monoidal r-Functors is well defined.

Theorem 12. Super Monoidal r-Categories and the Super Monoidal r-Functors between them
define a category SupMonrCat.

Proof. The composition F ◦ G of a super monoidal r-functor F and a super monoidal r-functor G
is given by

• (F ◦ G)C := FC ◦ GC

• (F ◦ G)V := FV ◦ GV

• (F ◦ G)AB := FGC (A)GC(B) ◦ FV (GAB)

Now we demonstrate that the defining conditions of a super monoidal r-functor are satisfied.
Firstly the preservation of sequential composition condition, first using functorality of FV and
super-monoidal functorality of G,

◦

GAC

FV

GV

FGC (A)GC (C)

FV

◦

GAC

FV

GV

FGC (A)GC (C)

=
FV

FGC (A)GC (C)

= ◦

GBCGAB

mG

mF

mG

mF

mF
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then using naturality of mF and super-monoidal functorality of F

FV

FGC (A)GC (C)

=
◦

GBCGAB

FV FV

=

◦

GBCGAB

FV FV

FGC (A)GC (B) FGC (B)GC (C)

mF

Next for the preservation of parallel composition condition

⊗

GA⊗A′,B⊗B′

FV

GV

FGC (A⊗A′)GC (B⊗B′)

FV

GA⊗A′,B⊗B′

FV

FGC (A⊗A′)GC (B⊗B′)

=

FV

FGC (A)GC (C)

=
⊗

GBB′GAA′

◦

E(m−1
G )

E(mG)

mG

mF

⊗GV

mG

mF

mF

Using naturality of mF ,

=

GBB′GAA′

FV FV

FGC (A⊗A′)GC (B⊗B′)

⊗

◦

E(m−1
G ) E(mG)

FVFV FV

FV

mF

mF

vF vF

=

GBB′GAA′

FV FV

⊗E(m−1
G ) E(mG)

FVFV FV

◦

mF

vF vF

FFF
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then using the composition of natural isomorphisms for monoidal functors.

=

GBB′GAA′

FV FV

⊗

◦

E(m−1
G )

E(mG)

FV
FV

F F

F F

◦

E(m−1
F ) E(mF ) =

⊗

◦

E(FC(m−1
G ))

E(FC(mG))

F F

E(m−1
F )

E(mF )

◦ ◦

=
⊗

◦

F F

E(FC(m−1
G ) ◦m−1

F ) E(FC(mG) ◦mF )

vF
vF

GBB′GAA′

FV FV GBB′GAA′

FV FV

All that remains is to demonstrate the state-based condition:

E1(f)

GA,B

FV

GV

FGC (A)GC (B)

FV

GA,B
FV

FGC (A)GC (B)

= =

E2(GC(f))

FGC (A)GC (B)

FV
=

E3(FC(GC(f)))

vF

E1(f)

GV

vF

vF

E The Category of CP-Super Monoidal r-Categories

We show that cp-functors compose.

Theorem 13 (Category of Completely Parallel Theories). The cp-super monoidal categories and
the morphisms between them define a category

That the former condition for cp-functors is preserved by composition is guaranteed by the

commutativity of the following diagram:

V V ′ V ′′

V V ′ V ′′

FH
�

LV LV ′

GH
�

LV ′′

FH
⊗ GH

⊗

the preservation under composition of the latter coherence requirement is more complicated. Using

commutativity of the diagram:

we find that the following diagram commutes:

[GFAFB,GFA′FB′] G[FAFB,FA′FB′]

[GFAFB,GFA′B′] G[FAFB,FA′B′]

[i,φ⊗
FA′,FB′

] G[i,φ⊗
A′,B′

]

GFAFB,FA′FB′

GFAFB,FA′B′
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The above commutations along with the coherence of a cp-functor and the lifting of such coher-

ence by G gives the following commutative diagram, which witnesses coherence of the composed

functor GF .

G
[F

A
,
F

A
′]G

[F
B

,
F

B
′]

G
F

[A
,

A
′]F

[B
,

B
′]

G
[F

A
,
F

A
′]G

[F
B

,
F

B
′]

G
F

[A
,

A
′][B

,
B
′]

[G
F

A
,
G
F

A
′][G
F

B
,
G
F

B
′]

G
[F

A
,
F

A
′][F

B
,
F

B
′]

G
F

[A
B

,
A
′
B
′]

[G
F

A
G
F

B
,
G
F

A
′G
F

B
′]

[G
F

A
F

B
,
G
F

A
′F

B
′]

G
[F

A
F

B
,
F

A
′F

B
′]

[G
F

A
G
F

B
,
G
F

A
′
B
′]

G
[F

A
F

B
,
F

A
′
B
′]

[G
F

A
F

B
,
G
F

A
′
B
′]

G
[F

A
B

,
F

A
′
B
′]

[G
F

A
B

,
G
F

A
′
B
′]
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F Super Monoidal r-Categories Induced Along an Ascending Sequence
of Super Monoidal r-Categories

We demonstrate that for an ascending sequence Ci the assignment of for each A,B ∈ Ci an object,

[A m B] := [Ri+1
i (A),Ri+1

i (B)] ∈ Ci+2 (50)

and the composition morphisms ©m,
⊗m

and the bijection Em defined by

◦m

= ⊗m =

⊗

[φ−1, φ]

,

Ei+1(Ri+1
i (f))

Em(f) =
◦ ,

defines a super monoidal r-category. The Em is a bijection follows immediately from the fact

that by assumption Ri+1
i is full and faithful. What remains is to check all equational conditions:

Bifunctorality

◦m

⊗m
=

⊗m

◦

⊗⊗

◦ ◦

E(φ−1) E(φ) E(φ−1) E(φ)

=

◦

⊗⊗

◦

E(φ−1)

E(φ)

E(φ−1)

E(φ)

◦

◦

=

◦

⊗⊗

E(φ−1) E(φ)

◦

= ⊗

◦◦

E(φ−1) E(φ)

◦

=

⊗r

◦◦

Composition on States The sequential composition condition is trivial, for parrallel composition

⊗m =

Em(f)Em(g)

[φ−1, φ]

⊗m

Ei+2
i+1 ([i, f ])Ei+2

i+1 ([i, g])

[φ−1, φ]

=

Ei+2
i+1 ([i, f ]⊗ [i, g])

[φ−1, φ]

=

Ei+2
i+1 (φ • ([i, f ]⊗ [i, g]) • φ−1)

=

Ei+2
i+1 ([i, f ⊗ g])

=

Em(f ⊗ g)
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Naturality We check the associator condition.

◦

⊗m

⊗m

=
Em(α)

◦

⊗

⊗

Em(α)

[φ−1, φ]

[φ−1, φ]

=

◦

⊗

⊗
[i, i]

Em(α)

[φ−1, φ]

[φ−1, φ]

=

◦

⊗

⊗

Em(α)

[φ−1, φ]

[i⊗ φ−1, i⊗ φ]

=

[[i, α], i]

⊗

⊗

[φ−1, φ]

[i⊗ φ−1, i⊗ φ]
=

⊗

⊗

[(i � φ−1) • (φ−1) • [i, α], φ • (i � φ)]

=
⊗

⊗

[α • (i � φ−1) • φ−1, [I, α] • φ • (φ⊗ i) • α−1]

=
⊗

[(i � φ−1) • φ−1, [I, α] • φ • (φ⊗ i)]

⊗

=
⊗

[φ−1, φ]

⊗

[φ−1, φ

[i, [I, α]

= ⊗

[φ−1, φ]

⊗

[φ−1, φ

◦

Em(α)

=
⊗m

⊗m

◦

Em(α)

We confirm the unitor condition, first by exapanding out the relevent definitions,

◦

⊗

E3
2 ([I, i])

=

◦

E3
2 (φ−1) E3

2 (φ)

E([I, ρ]) ◦

⊗

E3
2 ([I, i])

E3
2 (φ−1)

E3
2 ([I, ρ] ◦ φ)

⊗m

E3
2 ([I, i])

=

◦

E(ρ)

Then using bifunctorality,

=

◦

⊗

◦

E3
2 (φ−1)

E3
2 ([I, ρ] ◦ φ)

E3
2 ((E2

1 (i)))

◦

E3
2 (i[I,A])

E3
2 ((E2

1 (i))−1)

=

◦

◦

⊗

E3
2 (φ−1)

E3
2 ([I, ρ] ◦ φ)

E3
2 ((E2

1 (i)))

⊗

E3
2 (i[I,A])

E3
2 ((E2

1 (i))−1)

=

◦

◦

⊗

E3
2 (φ−1)

E3
2 ([I, ρ] ◦ φ)

E3
2 (i[I,A] ⊗ E2

1 (i))

E3
2 ((E2

1 (i))−1)

again using bifunctorality,

=

◦

⊗

E3
2 (φ−1)

E3
2 ([I, ρ] ◦ φ ◦ (i[I,A] ⊗ E2

1 (i)))

E3
2 ((E2

1 (i))−1)

=

◦

⊗

E3
2 (φ−1)

E3
2 ([I, ρ] ◦ φ ◦ (i[I,A] ⊗ E2

1 (i)))

E3
2 ((E2

1 (i))−1)

◦ ◦

=

◦

◦E3
2 (φ−1)

E3
2 (ρ)

E3
2 ((E2

1 (i))−1)

⊗ ⊗
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here using naturality of the Ci+2-Super Monoidal category Ci+1

=

◦

◦E3
2 (φ−1)

E3
2 (ρ)

E3
2 ((E2

1 (i))−1)

⊗ ⊗

=

◦

◦

E3
2 (φ−1)

E3
2 (ρ)

E3
2 ((E2

1 (i))−1)

⊗ ⊗

◦

=

◦

◦

E3
2 (φ−1)

E3
2 ((E2

1 (i))−1)

⊗

◦

E3
2 (ρ)

and then by further uses of associativity, the right hand side of the unitor condition is reached

=

◦

E3
2 (φ−1)

E3
2 ((E2

1 (i))−1)

⊗ E3
2 (ρ)

◦

◦

=

E3
2 ([I, ρ])

◦
=

E(ρ)

◦

the proof for the co-unitor is identical. Braid The braid rule follows by using the sequental

composition rule to produce an internal version of the braid rule which then lifts to an external

one.

⊗m =

◦

E([I, β])

⊗

◦

E([I, β])◦

E3
2 (φ)E3

2 (φ−1)

=
⊗

◦

E3
2 ([I, β] ◦ φ)E3

2 (φ−1)

=
⊗

◦

E3
2 (φ ◦ β)E3

2 (φ−1)
=

⊗

◦

E3
2 (φ)E3

2 (φ−1)
=

⊗m

G Existence of a Super r-Functor

Here we prove the existence of the candidate enriched functor,

Theorem 14. Let (C(i)) be an ascending sequence of Super-Monoidal categories such that every
[I,−] is full. Then, for all i, there exists a super-monoidal r-functor

γ : (Ci+2, Ci,©s,

s⊗
, Es, [− s −]) −→ (Ci+2, Ci,©m,

m⊗
, Em, [− m −]) (51)

defined by the functors γC(−) = ICi
(−) and γV (−) = ICi+2(−) along with the family

γAB ∆:=

E(◦IAB)

(52)

Proof. We will use from the start the fact that the composition morphisms are completely injective,
placing the left hand side of the monoid homorphism condition under two composition morphisms,
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for readability of the proofs we take all categories Ci to be strict. The generic non-strict case is
proven identically up to tedious additional book-keeping of associators and unitors.

γ
∆

:=

E3
2 (◦)

◦

γ
∆

E3
2 (◦)

◦

◦

◦ ◦

◦

∆

=

E3
2 (◦)

∆

E3
2 (◦)

◦

◦

◦

φ

◦

=

E3
2 (◦)

∆

E3
2 (◦)

◦

◦

◦

E(i)

φ

=
E3

2 (◦)

∆

E3
2 (◦)

◦

◦

◦

E(i)

◦

=
E3

2 (◦)

∆

E3
2 (◦)

◦

◦

◦

φ

=

E3
2 (◦)

E3
2 (◦)

◦

◦

◦

φ

φ

=
E(◦IAB ⊗ i)

E3
2 (◦)

◦

◦

φ

◦

φ
=

E(◦IAB ⊗ id)

E3
2 (◦)

◦

◦

φ

φ ◦

(53)

Then doing the same to the right and side of the condition.

:=

◦

◦ ◦

◦

=

◦

◦

φ

γ

◦

φ ◦̂ABC

◦

φ

∆

◦IAC

◦̂ABC

◦IAC

◦

φ
◦̂ABC

=

◦

◦

φ

◦IAC

φ

◦

ˆid⊗ ◦ABC

=

◦

◦

φ

◦IAC
φ

ˆid⊗ ◦ABC

◦

=

◦

◦

◦IBC

φ

̂◦IAB ⊗ id

◦

φ

(54)

Next we confirm that the parallel composition preservation condition is satisfied, deriving equality
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between the following two terms, firstly:

γ
∆

:=

E3
2 (◦)

⊗

γ
∆

E3
2 (◦)

⊗

◦

E3
2 (φ−1)

=

E3
2 (φ)

◦

E3
2 (φ−1) E3

2 (φ)

φ

E(i)

◦

E3
2 (◦)

◦

E3
2 (◦)

⊗

◦

E3
2 (φ−1) E3

2 (φ)

φ

E(i)

=

φ

E(i)

E3
2 (◦)

E3
2 (◦)

⊗

◦

E3
2 (φ−1)

E3
2 (φ)

φ

E(i)

◦

⊗

=

φ

E(i)

⊗

◦

E3
2 (φ−1)

φ

E(i)

E3
2 (φ • (◦ � ◦)) =

φ

E(i)

⊗

◦

E3
2 (φ−1)

φ

E(i)

E3
2 (◦ • (◦ � ◦) • (i �B � i))

(55)

=

φ

E(i)

⊗

◦

E3
2 (φ−1)

φ

E(i)

E3
2 (◦ • (◦ � ◦))

◦

E3
2 (i �B � i)

=

φ

E(i)

⊗

◦

E3
2 (φ−1)

φ

E(i)

E3
2 (◦ • (◦ � ◦))

=
⊗

◦

E3
2 (φ−1) φ

E3
2 (◦ • (◦ � ◦))

=
⊗

◦

E3
2 (i)

φ

E3
2 (◦ • (◦ � ◦))

◦

E3
2 (i)

E3
2 (φ−1)

⊗
=

⊗

◦

E3
2 (i) φ

E3
2 (◦ • (◦ � ◦) • (φ−1 � i))

=
⊗

◦

E3
2 (i) φ

E3
2 (◦ • (i �⊗))

(56)

and then secondly:

=

φ

◦

∆

E3
2 (φ) ⊗

◦

E3
2 (i) φ

E3
2 (◦ • (i �⊗))

E3
2 (◦)

=

φ

◦

◦

E3
2 (φ)

E3
2 (◦)φ

E3
2 (i)

=

φ

◦

E3
2 (◦)

φ

E3
2 (i)

E3
2 (φ)

◦

(57)
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Finally the state-based condition can be confirmed:

∆

E(◦)

Ri+2
i+1(E2

1 (f))

= ∆

E(◦)
◦

=

E2
1 (f)

◦

E(◦)φ

=

E2
1 (f)

◦

E(◦)
φ

=

◦

E2
1 (i � f)

◦

◦

E(◦ • (i � f))

=

E(◦ • (i � f))

=

E(Ri+1
i (f))

(58)

H Proof of Theorem

Lemma 4. The following condition holds for the isomorphism µi+1
i := F i+1(γ) ◦ ηi+1

i

◦

ηi+1
i

ηi
i+1

◦

µi+1
i

=
F i

F i+1

φ
φ

(59)

Proof.

ηi
i+1

◦

ηi+1
i

ηi
i+1

= =
F i

ηi+1
i

F i+1

Ri+1
i

◦

◦̂

ηi+1
i

∆

F i+1

F i+1

ηi+1
i

mi

◦

mi+1

φi+1

=

◦

φi+1
E(◦)

ηi+1
i

F i+1

mi+1

=

◦

E(◦)

∆

F i+1

ηi+1
i

mi+1

mi+1 (60)

Indeed the above property is the key ingredient in the construction of our main result.

Theorem 15. The apex C of any Merger of infinite order is a complete super-monoidal category,
in other words C is a CSMC such that every eI⇒A is an isomorphism.
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Proof. We work with the following definition of a closed symmetric monoidal category

Definition 19. An SMC C is closed if for every A,B ∈ Ob(C) there exists an object A ⇒ B

and a morphism evalA⇒B : A ⊗ A ⇒ B → B, called the evaluation morphism, such that for all
f : A⊗ C → B there exists a unique f̄ : C → (A⇒ B) such that evalA⇒B ◦ (id⊗ f̄) = f .

Since the coproduct
∐
i Fi is essentially surjective, each object A can be assigned an object

XA an “index” lA and an isomorphism LA such that LA : A → FlA(XA). A compact notation
can be introduced for combinations of functors of the form [Ii,−].

• Ri+1
i := [Ii,−]

• Rji := Rjj−1 ◦ R
j−1
i

furthermore the function l : ob(C)→ N can be extended to lists by

lAB := max(lA, lA)

After which one can define the object representing the space of morphisms from A to B by

A⇒ B := FlAB+1[RlAB

lA
(XA),RlAB

lB
(XB)]

This is the object representing the lifting of both A and B in to the ClAB which contains them
both, and then using the process object in the next category ClAB+1 to represent the processes
between them. The characterisation theorem of complete super-monoidal categories as closed
monoidal categories with each eI⇒A an isomorphism, means that one need only provide proof of
the latter formulation. For each A,B an evaluation eA⇒B : A⊗ (A⇒ B)→ B can be defined by,

η
l(AB)
l(B)

◦

η
l(AB)
l(A)

F lAB+1

LA

LA

:=eA⇒B

mlAB+1

(61)

For C to be closed monoidal one must show that for every A,B,C and for every f : A⊗C → B

there exists a unique f̄ : C → (A⇒ B) such that,

=
f̄

eA⇒B

f (62)
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Indeed such a map f̄ can be constructed. Firstly defining g such that

=

F lABC

g
f

η
lA
lABC

LA

η
lC
lABC

LC

LA

η
lABC
lB

mlABC

(63)

Such a g must exist since each functor Fi is full. In terms of this g define f̄ by

f̄ =

µ
lAB+1
lABC+1

∆

η
lABC +1
lC

LC

F lABC+1

ĝ

(64)

Then to prove the required identity first requires repeated application of lemma (16),

η
l(AB)
l(B)

◦

η
l(AB)
l(A) f̄

F lAB+1

LA

LA

=

µ
l(AB)+1
l(ABC)+1

∆

η
l(ABC)+1
l(c)

LC

F lABC+1

ĝ

=

η
l(ABC)+1
l(B)

◦

η
l(ABC)+1
l(A)

LA

LA

∆

η
l(ABC)+1
l(c)

LC

F lABC+1

ĝ

mlAB+1

η
l(AB)
l(B)

◦

η
l(AB)
l(A)

F lAB+1

LA

LA

mlAB+1

mlAB+1

(65)
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and then using the defining identity for the partial insertion operation ∆.

=

η
lABC +1
lB

◦

LA

∆

F lABC+1

ĝ

=

η
lABC +1
lB

φ

LA

◦
F lABC+1

ĝ

η
lABC +1
lB

LA

F lABC+1

RlABC+1
lABC

g

η
l(ABC)+1
l(A)

LA

η
l(ABC)+1
l(c)

LC

mlAB+1

η
l(ABC)+1
l(A)

LA

η
l(ABC)+1
l(c)

LC

mlAB+1

η
l(ABC)+1
l(A)

LA

η
l(ABC)+1
l(c)

LC

mlAB+1

φ

(66)

and finally using monoidal naturality of the transformation ηlABC

lABC+1.

=

η
lB
lABC

LB

F lABC

g

η
lB
lABC +1

LB

F lABC+1

RlABC+1
lABC

g

η
l(ABC)+1
l(A)

LA η
l(ABC)+1
l(c)

LC

mlABC +1

φ

η
l(ABC)+1
l(A)

LA η
l(ABC)+1
l(c)

LC

mlABC +1

φ
F lABC

η
lABC
lABC +1 =

η
lB
lABC

LB

F lABC

g

η
l(ABC)
l(A)

LA

η
l(ABC)
l(c)

LC

mlABC

(67)

The morphism f̄ satisfying e ◦ (A ⊗ f̄) = f must be demonstrated to be unique. Every µji is an
isomorphism by coherence of the sequence of super-monoidal categories, as a result every morphism
h : C → A⇒ B can be written in the form

f̄ =

C

A⇒ B

M

µ
lAB+1
lABC +1

η
lABC +1
lC

LC

=
m

µ
lAB+1
lABC +1

η
lABC +1
lC

LC

F lABC+1 (68)
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Where in the last line fullness of each Fi is used. Assuming h and h with decomposition in terms
of m and m′ respectively both evaluate to the same morphism e ◦ (A⊗ h) = e ◦ (A⊗ h′):

m

µ
lAB+1
lABC +1

η
lABC +1
lC

LC

F lABC+1

=

η
l(B)
lAB+1

◦

η
l(AB)
l(A)

F lAB+1

LA

LB

η
l(B)
lAB+1

◦
F lAB+1

LB

mlAB+1

m′

µ
lAB+1
lABC +1

η
lABC +1
lC

LC

F lABC+1

η
l(AB)
l(A)

LA

mlAB+1
(69)

Which in turn implies

m
=

η
lB
lABC +1

◦
F lABC+1

LC

η
lABC +1
lC

LC

η
lABC +1
lA

LA

mlABC +1

m′

η
lB
lABC +1

◦
F lABC+1

LC

η
lABC +1
lC

LC

η
lABC +1
lA

LA

mlABC +1

(70)

Since each η and L is an isomorphism, each composition morphism© is completely injective, and
each Fi is faithul this entails that m = m′ and as a result that f̄ = f̄ ′. It follows that f̄ is the
unique morphism satisfying the evaluation condition for f . The remaining condition to prove is
that each eI⇒A is an isomprphism, firstly each eI⇒A takes the following form,

η
lA
lA+1

◦

η
lA
1

F lA+1

ν1

LA

=eI⇒A

mlA+1

(71)
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Two properties of the natural transformations η can now be leveraged, firstly a family of commuting
squares involving IC which indeed commute since η is monoidal,

IC

Fn−1(In−1) Fn(In)

Fn(Rnn−1(In−1))

Vn−1 Vn

ηIn−1 Fn(En
n−1(iIn−1 ))

secondly a family of squares which commute since η is natural,

Fn−1(A) Fn(Rnn−1(A))

Fn−1(B) Fn(Rnn−1(B))

Fn−1(f)

ηn
n−1

Fn(Rn
n−1(f))

ηn
n−1

The above two famillies may be used to show that for each k the term ηk1 ◦ ν1 may be replaced by

ηk1 ◦ ν1 = Fk(Rk2(i2)) ◦ Fk(Rk3(i3)) ◦ · · · ◦ Fk(ik) ◦ νk
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using the following commutative diagram built from the above families

IC

F
k (I

k )

F
k−

1 (I
k−

1 )
F
k (R

kk−
1 (I

k−
1 ))

F
k−

2 (I
k−

2 )
F
k−

1 (R
k−

1
k−

2 (I
k−

2 ))
F
k (R

kk−
2 (I

k−
2 ))

F
3 (I3 )

F
k−

1 (R
k−

1
3

(I3 ))
F
k (R

k3 (I3 ))

F
2 (I2 )

F
3 (R

32 (I2 ))
F
k−

1 (R
k−

1
2

(I2 ))
F
k (R

k2 (I2 ))

F
1 (I1 )

F
2 (R

21 (I1 ))
F

3 (R
31 (I1 ))

F
k−

1 (R
k−

1
1

(I1 ))
F
k (R

k1 (I1 ))

ν
1

ν
2

ν
3

ν
k
−

2

ν
k
−

1

ν
k

F
k (E

kk
−

1
i

k
−

1 )

η
kk
−

1

F
k
−

1 (E
k
−

1
k
−

2 (i
k
−

2 ))
F

k (R
kk
−

1 E
k
−

1
k
−

2 (i
k
−

2 ))

η
k
−

1
k
−

2
η

kk
−

1

η
43

F
3 (E

32 (i2 ))
η

k
−

1
k
−

2
F

k
−

1 (R
k
−

1
3

(E
32 (i2 )))

η
kk
−

1

F
k (R

k3 (E
32 (i2 )))

η
32

F
2 (E

21 (i1 ))
η

43

F
3 (R

32 (E
21 (i1 )))

η
k
−

1
k
−

2
F

k
−

1 (R
k
−

1
2

(E
21 (i2 )))

η
kk
−

1

F
k (R

k2 (E
21 (i1 )))

η
21

η
32

η
43

η
k
−

1
k
−

2
η

kk
−

1

In particular the above identity is given by the two routes along the circumference of this
commutative diagram. Using the derived identity the evaluation eI⇒A is consequently equal the
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following diagram

η
lA
lA+1

◦

E(ilA
)

F lA+1

νlA

LA

=
eI⇒A

F lA+1

E(ilA−1)

RlA+1
2

RlA+1
lA

E(i1)

mlA+1

η
lA
lA+1

◦

E(ilA
)

F lA+1

νlA

LA

=

E(ilA−1)

RlA+1
2

RlA+1
lA

E(i1)

mlA+1

(72)

Using the definition of the functor RlA+1
lA

=

η
lA
lA+1

◦

E(ilA
)

F lA+1

νlA

LA

E(ilA−1)

RlA+1
LA

RlA+1
lA

E(i1)

mlA+1

RlA2
=

η
lA
lA+1

◦

E(ilA
)

F lA+1

νlA

LA

E(ilA−1)

E lA+1
LA

E(i1)

◦

mlA+1

RlA2 =

η
lA
lA+1

◦

F lA+1

LA

E(ilA−1)

E lA+1
LA

E(i1)

RlA2

(73)

The above is a circuit built from the functor FLA+1 applied to a morphism k along with post
composition by an isomorphism. Since the functor FLA+1 will preserve isomorphism, all that
remains is to show that the morphism k on which the functor is applied, is also an isomorphism.
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To demonstrate this we note that the mapping

◦

f̂

f 7→ [f,X] :=

[B,X]

[A,X]

is a contravariant functor, and therefore preserves isomorphism. Furthermore since each raising
functor ([Ii, φi+1, E i+1

i (iIi)], ) is strong monoidal by assumption it follows that each Ek+1
k (ik) is an

isomorphism, each Rji is a functor an so preserves isomorphism, entailing all together that every
morphism in the circuit k is an isomorphism.
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